Basic Concepts:
Sets, Relations and Mappings

1.1 Introduction

In this initial chapter we recall the concepts of sets ang functions which
in the study of real analysis. are fundamentg]

. set 18 such :
a set is understood to be a well-defined collection of distinct objects called el:’n:::;l.

: S.
The term well-defined is that properly of the set by which one is able to determine
whether a given element belongs to the set, or not.

Some authors prefer to take the word set as a primary and an undefined concept,
and then develop it axiomatically (as in the book Aziomatic Set Theory by P. Suppes).

Our understanding of well-defined collection of distinct objects is intuitive and naive
and adequate for our purpose.

About Sets. We shall identify a set by stating its members (or elements). We
denote sets by capital letters A, B,C, etc. and use lower case letters a,b,c, etc. to
represent their elements.

If an element z is in the set A, we write z € A and say that z is a member of A or
z belongs to A. If z is not in A, we write T ¢ A (x does not belong to A).

We write {z} to denote & singleton set whose only member is .

3 ; " w "
We write {T1,Z2," " T,} to denote a finite set of n elements Z1,%2,"*" »%n
) ) b/

L | ® 17
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where we use a curly
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When it is possible tO list all the eleme -
representation of sets. €8 {a,e,t,o,u}, t Bm 5
But most often a set is rEpresented by son

| ts of the set. We write _ B _
. X = {z : x obeys P(x)} or simply X ={z: Plz)}
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We shall, throughout this text, us

N = set of all natural numbers or positive integers = {1,.2,3,%% §,
7, = set of all integers = {0,£1, %2, }. .
Q = set of all rational numbers = (ple:pEL and q € N}

R = set of all real numbers. \
We write Z+, Q*, Rt to denote the positive elements in the respective sets. |

- . ———— = = o
Subsets. If each element in the set A is also a member of the set B, thep ;‘é--.. |

that A is a subset of B and we write A C B (418 included in B) or equivalently, g 4

(B includes A). 3 ‘
We say that a set A is a proper subset of B if AC B and 3 at least one elemep; of |

B that is not in A. |

We then write: A C B (read: A is a proper subset of B). |

Equality of two sets. Two sets A and B are said to be equal if the sets congigt
of precisely the same elements. We then write A = B. |

It is easy to see that A = B, provided A C B and B C A and conversely,

ACBand BCA= A=B.

Universal set U and Empty set ¢. In any discussion involving sets we consider

{ai'ﬁxed 'set ‘U which is the set of all elements under discussion. Thus every set in that
1Iscussion is a subset of U. We call U the universal set or the universe.

In real analysis the set R of all
. real numbers is tak :
therefore, with subsets of real numbers. St Snlveres. ally

Note: We also use S for an universal set.

The symbol ¢ denotes what we cal]
element. For e.g., the set whose elements

is the null set ¢. The set of all
90 out of 100 is ¢,

the empty set or null set which contains 0o
are common elements of {2, 3,4} and {5,8, )

st
if the highest umd:rr;ts of Class V of a school who secured more the?
15 90. We do not know in advance whether a0y

i = ‘

W XY e
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student secured more than 90 or not. That is why, L AL Tt is called an

; . i bset of any S€
in theory of sets. For logical consistency ¢ is & Su

improper subset of any set A,

: o)
haved € ACU and A C A. [A is called trivi

Remember: For every set A we
subset of A
AQB&ndBQG.then

An useful result. Set inclusion s transitive, i.€., if
ACC.

[Fur,AC;B:?IeA:?IEB;BQC;ﬂJ:EB:?IEC-

- two together => € A== T € C,ie, AC C] |

Family or Collection of Sets. Let I be any set. Suppose for e@ memhe+r ; € ;
we can associate a set A;. Then the collection [Ai:1 € I} form a family of sets in exe
by I (I is known as an indez set).

Power set. Given a set A. We collect the family of all subsets of A (this family
includes the set A itself and ¢). This family of sets is called the power set of A, denoted
by P(A).

As for example, let A = {1,2,3}. Then

P(A) = {{1}, {2}, {3}.{1,2}, {1,3}, {2.3}, {1,2,3},9}-

In fact, if A is a finite set of n clements, then P(A) has 2" elements.

[Hinita: * Qo + "L+ "Cadont N =27

1.2 Operations on Sets (Set Algebra)

We now define methods of obtaining new sets from given ones—these methods are called
operations on sets. Some of those operations— Union, Intersection, Complementation
and Difference of two sets, are described below:

L. Union: The union of two sets A and B is the set AUB = {r:z € Aorz € B}.

(The word or is to be used in the inclusive sense allowing the possibility that z
may belong to both the sets).

For the collection of sets A; indexed by ¢ € I we define the union of this collection

by U Ai = {z:x € A for some i € I}, where I is an index set.
i€l
[In case I = N = set of all positive integers n, the union is denoted by

o0
| Ap = {z: 2 € Ap for some n € N}; it has a special name—countable union)|
n=1

IL. Intersection: The intersection of two sets A and B is the set
ANB={z:2€ A and z € B}.

___ﬁﬂi
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For the collection of sets A; indexed by i € I, the intersection
NAi={z:z€ A foralliel}

iel
and the countable intersection (i.e., when I = N)

o0
N Ai={z:z € A, for all i € N}.

i=1

- = e =
Examples (i) Let A, = {n}. Then |J Ay =Nand |J A, =2, (| An = 6.
n=1

n=—oo n=1

(ii) Let A, = (=1/n,1/n), n € N. Then G Ap, = (-1,1) and Fsl A, = {0}.
T = =
(iii) Let A, = {1,2,3,--. ,n}. Then |J A, =N but (1 An=H1}

g neN nel
| Disjoint sets. Two sets A and B are said to be disjoint, if they have no elements
In common, i.e., if ANB = ¢.

The family of sets is called pairwise disjoint, if each distinct nair of elements of

the collection are disjoint. Thus an indezed collection {A,;}ic; is pairwise disjoint, if
A;iNA; =¢ foralli,j €1 andi#j.

ITI. Complementation. Let U be the universal set. Suppose that A and B are two

subsets of U. Then we define the complement (or difference) of B relative to A, denoted
by A — B or A\B (A slash B), to be the set

A—-B={z:z€U,z€ Aandz ¢ B}
By A’ or A° (complement of A) we mean U — A, i.e.,

A={z:z €U x ¢ A} = {z: z ¢ A} (- r always belongs to U, no need to
mention).

In Real Analysis, the universe is R, the set of all real numbers. If A C R, then
Alor A=R-A=R\A={z:z€Randzr ¢ A} ={z:z ¢ A}.

Example (i) Let A = {2,4,6} and B = {2,6,10,14}. Then complement of B
relative to A is the set

A\B=A-B={z:z2€ Aand z ¢ B} = {4} and
B\A=B-A={z:2€ Bandz¢A}={10,14)}.
Note that A — B and B — A are two disjoint sets.
(ii) Let Q@ C R (Q is the set of all rational numbers).

Then Q" = R — Q = {set of all irrational numbers}.

——_'
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IMPORTANT CON SEQU ENCES

Let U be the universal set and A, B,C C U. Then

: tative.
1. AUB = BUA and ANB = BN A. Union and Intersection are commu
2: Au(BuUC) =(AUB}LJC;Ar‘|(BnC) = (AHB}nC.
Union and intersection are associative. | AAED
3. AU(BNC)=(AUB)N(AUC); AN(BU C)=(AN {a)zstmbuﬂle -
Union is distributive over intersection and intersection 18
union. i.e., each is distributive over the other.

! !
4. De Morgan's laws: (AU B)' = A'N B' and (ANB) =AU B'.
5. A-B=ANDB.

M

. . important op-
Besides Union, Intersection and Complementation we introduce two i1mp
erations:

IV. Symmetric difference: Symmetric difference of two sets A and B 1s denoted by
AAB and is defined by

AAB = (A—-B)U(B - A).

V. Cartesian product: If A and B are two non-empty sets then the Cartesian

product A x B of A and B is the set of all ordered pairs (a,b) witha € Aand b € B,
that is, A x B = {(a,b) : a € A,b € B}.
(n 8]
For e.g., let A = {1,2,3} and B = g
{1,4}, then the Cartesian product A x B
is the set whose members are (1,1), (1,4),

04H2H B4
4 ® o o
(2,1), (2,4), (3,1), (3,4). l'. ‘.{ '=l ioe
We may visualize that the set A x B P o
corresponds to six points on the plane with 1+(LD) (2;” (:;*1)
coordinates that we have listed above. = : '2 3 +~Set A
We may draw a diagram (Fig. 1.2.1) \
to exhibit the elements of A x B. Fig1.2.1
It is interesting to draw the diagram of Yy
A x B, if S

A={r:zeRand1<z2<2}
and B={y:yeRand0<y<lor2<y<3}. |

The diagram of A x B is the adjoined.
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etric difference and Cartesian products

Properties: Symm
munutative and associative:

1. Symmetric difference is both co
AAB = BAA,
AA(BAC) = (ALB)AC.
2 We have defined AAB = (A-B)U(B - A. Fr
(AU D) - (AN B) (see Ex. 1.3.5). Draw a diagram of AAD.
AN (BAC) = (ANB)A(ANC).
AA¢ = A and AAA = ¢.

Cartesian products:
(a) Ax B# B x A, AxB=Bx A& A=D,

(b) (AUB)xC =(AxC)U(BxC); Ax (BUC)=(AxB)U(
(c) (ANB)xC=(AxC)N(BxC); Ax(BNC)=(A x B)N( +
(d) (A-B)xC=(AxC)—(BxC); Ax (B-C)=(AxB)—-(AxC)
(e) A#¢9p, AxB=AxC= B=C. |
6. Ertension: Let A;, A9,--- , A, be a finite collection of n sets. Then
:_M”.mw..“uw Mu .,,M x A, = {(a),a3, - :,,._._L ca; € Aj,ap € Ag--an € Ap}
=A== A, = A (say), the Cartesian product
A" = {(a1,a3, - ,an) : a, € A}.

Wa A = R. Then R = {(a;,az, -+ ,a,):a, € R}.
e call (a;,az, -+ ,a,), where each a; € R, an n-tuple of real numbers.

om this we can show that AA R =

Sl

Venn dia . : .
gram. For the purpose of illustrations we may often use Venn diagrams.

Given : i |
below Venn diagram representations of the different operations on sets:
@ @

(b) ANSB (c) A-B

Fig 1.2.3 Diagrammatic representation of operations of sets.

e —————————————

s SETH, nEL

__._.:_}—u R ks

1.3 Solved E

1, Let A
m_in::..._c 1.3
elements of the set AU(AN ).
L ution: A nB = {Y 1/s} and hence AU (AT 1), - )
- v s e ysy L (s = (LY J3, YA 5
— 3. C : o subsets O
. . A 13, an thiee 8u
: . rse S = 1.2,3,4,5,0} and f A,
9, If the unwverse | g

ATIONS AN ?__}_._;2:1

HASIU CconNGl

-

Determine the
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xamples

(1,1/2,1/3 1/4 \/2, \/m, /8 1100}

/o) and B

-

34,0} and BNC =

(i) B'uC.

= Au(BNC) (using distr

= {1,3,4,6} U (1,2,6)

= {1,2,3,4,6}.

=S—(BnC)={1,234
X =Y,

Lo prove .

-u'
EHH—E?E : :..._w._.:; then dete

S, where A=1{1
(i) (AUB)N (AU C);

Solution: (i) (AU BYN(AU &)

ibutive law)

; ..q.. ) I .P..-h-c - .ﬂudkﬂdg‘.
(ii) puc & (BNCY 5,01 = ¢ # show X G Y
ng problems on set. equalities, €4, we B =

_pB=AND".
- (BUC) =

Note: In solvi
and Y C . Another use

If A, B, C are three sets, then (i) A
u(A - C).

ful relation is A

(A- B)N(A=C)

Example 1.3.3.
i)y A- (BNC) = (A - B)
Solution: To prove (i), we shall prove that every
contained 1n both (A — B) and (A~ C) and conversely.

Let 1€ A—(BUC), thenz € A and z ¢ BuC. Hence,
Hmbc:ﬁﬁmm:_iﬁm..\__:E.Hﬂ C
z€(A—-B)N(A- C).

element of LHS A-(BUC) s

re Aand 18 neither in

B nor in C. Therefore,
H:mzﬁmhimmﬁﬁmzﬁhmm{ﬁ.

. A—(BUC)C(A-B)N(A-C) (1)

ifre (A-B)N(A-C),thenz € A—B and r € A—C. Hence, T € A

Conversely,
¢ C. Therefore, € Aand x ¢ (BUC), e, T € A-(BuUC).

and r ¢ B and x
L (A-B)N(A-C)C A-(BUC). (2)

Relations (1) and (2)
A-(BNC)=(A-B)Nn(A-0C)

To prove (ii), proceed exactly in a similar manner.

m "
xample 1.3.4. Let S be the universal set. A, B,C are any three subsets of S. Then
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(i) AN(B=-C)=(AnB)-(ANC); Cxy
(ii) (AAuB)u(AnBNC)=AuUB Ul :

(i) (AnB'NnC)U(BNC)U(ANC)=C;

where A', B',C’ are respectively the complements of A, B,C relative to S,

Solution: (i) RHS = (ANB)—-(ANC)=(ANnB)N(ANC)
=(ANB)N(Aul’)
={(ANnB)NA}U{(ANB)NC"}
=¢pU{(ANB)NC'}=(AnB)NnC

LHS = ANn(B-C)=An(BNnC)=(ANnB)NC
L AN(B-C)=(ANB)-(ANnC), proved.
Note: (ANB)NA"= A’ Nn(AnNB) (Commutative property)
= (A'NA)NB (Associative law)
=¢NB = ¢.
(ii) LHS = (A uB )U(ANnBNC’)
=(ANB)YU{(ANnB)NC"} (De Morgan’s law)
={(ANB)U(AnNB)}N{(ANB)YuUC’'} (Distributive law)
=SN{ANB)ulC'}=(AnB)ucl’
= (AT UBIUE
=A'UB'UC
= RHS (proved).
(iii) First, we observe that

(BNC)U(ANC)=(CNnB)u(CnNA) (Commutative law)

(De Morgan’s law)
(Distribution law)

(Associative law)

(De Morgan’s law)
(Associative property)

=CN(BUA) (Distributive law)
=(BuAd)nC (Commutative law)
=(AUuB)NnC. (Commutative law)

We also have A/ NB'NnC= (A'NB’)NC (Associative law)
= (AUB)NC. (De Morgan's law)
Now, the given LHS = (A'NB'NnC)u(BNC)U(ANC)
={(ANB)YNC}U {(AUuB)NC}
={(AUuB)U(AUB)}NnC
— SN C = C = RHS (proved).

(Distributive law)

Example 1.3.5. Prove the following for any three subsets A, B,C of the universal
set S:
(i) (A-C)Nn(B-C)= (AN B) - C;
(ii) (A-B)UB=Aiff BCA. |
(iii) (A-B)U(B—-A)= (AUB) - (ANB), ie., AAB = (AUB) - (AN B).

;wm‘#ﬁ.—.::[
CEPTS: SETS, ﬂ.m..._..._r..—.mnulm AND
ASIC CON 5

yarTER 15 B

B=C.
) If AAB = ANC, prove that
(iv ﬁ
‘ _c=BnC"
[ution: (i) mlﬁ.ﬂh_\:ﬂ and B
maﬂw.mm = T.#..ﬁq]ﬁmlmwu
=(AN chn(BN ﬁa&ﬁﬁmﬁﬁ B

(Associative law)

B (Associative 1aw)
(-c'nC'=C")

=47 o jﬁm ﬁOoEEEm.ﬂﬂm law for N)
=B kuﬁj C’ A.Pmmoﬁm.idm law) e
= __“.MW N O Eﬂ.ﬁﬂ.ﬂwﬁm ,—.W...m-_.1 oI

C' (Com
= (ANnB)N
= [ANB)=Y
— RHS (proved).

= nBYuDB | |

AM u B)N(B'U B) (Distributive law) |
uﬁmcmvjm hmnaw?.m_.mmumcmu
Hmﬁcm o5 AuBCS]

= £ A
BCA mcmﬂmganuﬁﬁmﬁmﬂwhcmibﬂm.|

(i) (A-B)UE

Now if

_ , BNA" .
(iii) (A~ B)U (B — A) 1H| Mﬂbﬂﬁmm_%rm BYn{(AN BYU A"} (Distributive law)

.. bcuﬂ_ujﬁmw:chﬁuw
— {(AuB)N(B'UB)}N{( (Distributive law)

= {(AuB)NS}IN{SN (BBuA) (S= universe)

= (AUB)N(B'UA)
— (AuB)N(ANB)
= (AUB) - (ANB).
Thus AAB = (AU B) — (AN B).
(iv) B=¢AB = (AAA)AB = AA(AAB) = AANALC)AC = ¢AC = C.

(De Morgan's law)

1.4 Relation from A to B: Relation on a set A

Let A and B be two non-empty sets. A relation R from A to B is any subset of the
Cartesian product A x B.

We often speak of a relation R from A to A: we call it relation on the set A.
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ns b CALe
Definiti =
on. Let 4 bean h
' p on-empty set. A subset R of i
1s called a relation on A. If (z,y) the Cartesian producy 4 x

siid we write 58, € R, we say that r is related to y by the relatiq +
N R
lE-g.. R —; § ¥ .
.. Acnmnv{f 2} (1,3),(2,3)} is a relation on the set A = {1,2,3)}. Here 1
y it is the usual relation < (less than) because 1 < 2 1 <3 9 e 1R2, 1
? - y &< 3. On

same set A = {1,2, 3}, relati - :
(1.3). 2.3)), } ation < is described by the set {(1,1), (2,2)

R3,

th
3.3, (1,

ln

D ﬁ W w I % . q

, yRz (i.e., whenever
said to be a symmetric relation: (z,y) € R, (y,z) also belongs to R), then R is

(iii) If Ry and —
+ yRz Rz (i.e., if (a
then R is said to be a transitive relation (z,y) € R and (y,2) € R, then (z,2) € R),

gs.

A relation R
on a set A is called an ; :
symmetric and tronsitive. equivalence relation on A if R is reflezive,

Note: >t re
ote: Sometimes such relations are called binary relation
5.

Moreover, R is ]
e e.r, R is called antisymmetric, if aRb and bRa together imply a = b
e consider a few examples on relations: R

Example 1.4.1. Let A
-4.1. = Z, the set of all inte '
- ) gers. Consider the subset R
defined by R = {(z,y) : x — y is divisible by 3}. et WA B

Solution: Here xRy, if (x — y) is divisible by 3.
(a) R is reflezive (. x — z is divisible by 3 for every = € Z);
(b) R is symmetric (because x is divisi }
— y is divisibl — z is divisi '
T | Y ivisible by 3 => y — z is divisible by 3, i.e,,
(c) If z — y is divisible by 3 and y — z is divisible by 3, then it is certainly true that
x — 2= (x —y)+ (y — 2) is also divisible by 3.
Thus Ry and yRz => zRz. Hence R is transitive.

Thus here R is an equivalence relation.

Example 1.4.2. Let A =R (the set of all real numbers). It is easy to prove that the
relation ‘=" is an equivalence relation (exactly as in the previous problem).

cxample 1.4.3. Let A =Z — {1}. We define the relation R on this set by the rule

Ry, ifr andy have common factor other than 1}. Verify that this relation is reflexive

A1 N
g 1: BASIC CY -y
GHAPTER T). For e.g, T = 12, =
put not transitive (R and S but 1t )
tric

and symimne e

y, yRT, 20 ., the relation
B A=1Z = set of all integers: G d?”:fif 1': ransitive. (T
Example 4.4 LE: on R 18 either reflezive nor symmetric Ot

This TEl@

mean T < 7

t R or S) i ¥: T el VE ﬂﬂd
e 7, we define Ry to mean T < y. This mii!?rnbﬁf ‘f'tﬁ{ sl
Examplﬂ ’ -t Oy?nmetr'ic (R and T but not S). For €9 S UL Y =

i 5 .

{ra
) s relati .« reflerive,
” 6. On 7, we define sRy to mean r<y+l This relation 3 fl
Bt s e or transitive. (R but not S and T)
ex-

mmetric T

ither sY .
put neit This relation is neither refl

47, OnZ we defi
ive but it is SY™

the set A of all fractio

ne Ry to mean T = —.
metric. (S but not R and T)

ns of the form a

Example 1.

jve, noT transt
/b, where a.b are integers

‘CﬁﬂIi Ve, nor

Ex;mﬂ;lzllﬂ‘i.i;e (c)izﬁﬂe a/b R c/d, iffib = c. This relation 18 neither 7
with @, )
symmetTic, nor transitive. (Not R. S, T)
iff r and

Example 1.4.9 Let A = {1,2,4,6,-~-}. We define the relation R by cRy,
x o - e r
y have @ common factor other than 1. ansitive, but it

is not reflexive because 191 8 not true.
1.4.10. Let A be the set of all complex numbers. We define the relation R
(where z and W are two complex numbers) to mean Re (2) < Re(w)
Then this relation is reflexive and transitive but not symmetric.

This relation 13 symmetric and 11
(S and T but not R)

Example
on this set by zRw

and Im(z) £ Im (w).
(R and T but not S)

Example 1.4.11. On Z define aRb, if a — b is even. This relation R is an equivalence
relation (i.e., it is reflezive symmetric and transitive), but it is not anti-symmetric.

Example 1.4.12. On N define aRb, if and only if a is a divisor of b. Then the relation
R is not symmetric but it is reflezive, anti-symmetric and transitive.

Partial order relation. A relation ® on a set A is said to be a partial order
relation, if R is reflexive, anti-symmetric and transitive.

e.g., set inclusion: AC A, AC B and BC A= A=Band AC B, BEcC=
A C C defines a partial order relation on the set of all subsets of a given set A.

A set A with a partial order relation R is called a partially ordered set (or a
POSET).

il r———
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The symbol <

< is used to indicate partial order relation; thus a set 4 With 4
order relation is written as (A, <). vE.mz

If the partial order on a set A be such that for any two elements a,b e
a<borb<g

.h..__ (9]
= a, then the partial order is said to be 2 total order or a linear order the,

e

ORDERED SETS
Q. What is an Ordered set?

Let S be a set. An order on S is a relation, denote
properties:

(i) If z € S and y € 5, then one and only one of the statements:
s true (Law of Irichotomy)
(ii) fz,y,2€ S

d by <, with the wc__cﬁ:m bwg

<y, ”w:Q.nH

iz <yand y < 2, then < z (Law of Transitivity).

An ordered set is a set S in which an order is defined.

e.g., Q

s an ordered set, if r < s is defined to mean that s —r is a positive ratiopy
number.

Bounds of an ordered set: For an
upper bound and lower bound.

Let EC S. If 3 3 € S such that =
above

ordered set S, we introduce the concepts of

< pBforvVzeE,
and we call 3, an upper bound of E.

Lower bounds are defined in the same way (with >

= 1n place of <).
Definition. Suppose S is an ordered

mmﬁEamm.w.mzamcﬁﬁcmmﬁrmﬁm_wm bounded
above. Let a € S with the following two properties:

(i) @ is an upper bound of E;
(ii) If v < a, then 7 18 not an upper bound of E.

HrmnDEnm:maﬁrmhm&“ﬁﬁﬂmﬂg::a (lub) of E or the supremum of E and we
write a = sup E.

then we say that E is boundeq

The greatest lower bound or infimum of E which is bounded below is defined in

a similar manner, i.e., o is a lower bound of E and that no § with 8 > a is a lower
bound of E, then a = glb of E or inf E.

These concepts will be used in real analysis.

EXERCISES ON CHAPTER 1-I(A)

(On Basic Concepts)

1. Are the following statements true? Give reasons.

10.

11.

a = A. true
4 d), (e) are true, others are not |

-
H

. others are not|
) and (d) are true; ot .
E:‘m.:_,mﬂv set. State whether the following

- + X
=3 and A= 1% “T:m. (a), (c); (

() 2€ 4

Q- H & ﬂ — _

are true or false.

(a) .HH: = ¢,
(b) {¢} =&

(e) ¢ € A (g) A€ {A}.
(f) AC A;
[Ans. True — (e), (f) and (g); others are false]

. wn a set
4,6}. Write down
. 4,6}, D = {1,2,3,4,
B = {24,868} € {1,3,4,
Lh#— — .ﬂ..—.___myu * ! !

5 mu qd .ﬁw- . \ L_ﬂ. 3 m._
& mzﬂmwﬁ ww,m Mql {1,2,4}. Obtain the members of the sets: AU B,
Let A=1L495 2 = 159"

AxB P r - 1 set = {1,2,3,4,5,6,7,8} and A, B, C are its three mcvmm.,_um %éw
- Hﬁcwz_m__._nm%wmmmkuﬁ.w w. mg 7,8} and C = {1, 3,6, 8}. Obtain the following sets:
.—,vu_a;__ﬁ“ 5 Wl L] . ] 1 1 1 __

B L C").
ANB' NC and (AUC)N( | .
Let A= {1,2,3,{4,5,6}} and B = {1,2, {4,6}}. Tﬂ,& ANB E&MCW .y
Let A= {1,2,3} and B = {1,5}. Obtain the Cartesian products A x B, :
Ax A BxB,(AxB)x Aand Ax (B x A).

(d) ¢ € A;

e C
. Define equality of two sets. For n sets let Ay, Ap,--- ,An. Let A1 C A2 C Aj C

... C A, and also let A; D A,. Prove that the n sets are all equal.

Let A = {1,2,3,4,5}, B = {2,4,6,8,10} and C = {3,4,5, 6}.

Obtain the sets: (A — B); (B - C); (C — A); (B — A); (B — B).

Let A = {1,1/2,1/3,1/a} 6 B = {1/2,1/4,1/6,1/8}, C = {1/3,1/4,1/5 1/6} and suppose
that the universe is S = {1,1/2,1/3,1/4,.-- ,1/9} . -

Obtain: (ANC)', (AUBY, (A", (B-C),B—A,B'—A’, AnB, AUB', A’nB'.

(On applications of the Laws of Algebra of Sets)

. A, B, C are any three sets. Verify the following properties:

(8) A-B=A—-(ANB)=(AUB) - B;

. _  eeree——— 000000
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1. Define a

have the same age.

30

, ﬁhmmﬂimﬂiﬁ_“_

(&) Ay (BAC)

= (4
3. Prove by using | (ANB)A(Anc),

mﬂmmmb_
(a) (ANB)U(4n B') Hmﬂw_.m n—
(b) ALDWJC.@”.LCW. q

m__v ANS=0; (ANBYN 4 = o

Mm.vv .“.,.m_ CQVDAWHCDJHnmuCLJCAmh]Qu

(f) A Cﬁlhﬁmvum_.mcﬁmhjmvuhcm.
(4 UE)=ANB; AN(AUB) = 4

(8) Ec@n%c@i@c&nEjmvcﬁjgcasﬁ.

BaEE:EEEE
(Distributive Law)

Cabhjmgcﬁbﬁﬁv

"
¥

(On Relations on Sets)

relation ® on the set P of all people by taking xRy to mean z and y

Is it an equivalence relation? Justify your assertion.

2. Show that the relation > (greater than) on the set of real numbers is Transitive
but neither Reflexrive nor Symmetric.

3. Give an example of a relation on a set:
(a) which is symmetric and transitive but not reflexive.
(b) which is reflexive and symmetric but not transitive.
(c) which is symmetric but neither reflexive nor transitive.

[Ans. (a) Ry, only when z —y # 0 (z,y € R)

R is the set of all real numbers.

Another example: Ex. 1.4.9 7 is the set of all integers]

(b) Ex. 1.4.3.
(¢) Ex. 1.4.7.]
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szﬁﬂm

We define a relation “=" (called Congruence

11 integers.
spglite i f a — b is divisible by 5. Prove that

a b € Z, then a = b (mod 5),
=" 1s an equivalence relation D:.H.
5 m.i:i which of the following relations
| alence relation: R,S,T or EQ]
1 Relation

Set
.|H. Set of all triangles in a plane

4. Let Z be th
relation): It

are reflexive, symmetric, transitive or equiv-

(a) is congruent to

(b) is similar to

(a) is perpendicular to

(b) is parallel to

(a) aRb, iff la —b] < b

(b) aRb, iff 3a + 4b1s divisible by 7
(c) aRb, iff a — b divisible by 5

[L. Set of all lines in & plane

IIL. Set of all mtegers

[Ans. L (a) EQ; (b) EQ. II. (a) S (not R,T); (b) EQ. IIL (a) Not R.S,T; (b) EQ;

(c) EQ/]

1.5 Mapping or Function

We now discuss the most fundamental notion of analysis, namely function (or mapping).

A function f from a set A into a set B is a rule of correspondence that assigns
to each element z € A, a uniquely determined element f(z) in B. We also call it a
mapping from A into B and write f : A — B. (read: f maps A into B).

In the definition of function given above we have used a phrase rule of correspon-
dence which needs further clarification. So the following definition of function is more
widely accepted:

Definition. Let A and B be two non-empty sets. Then a function (or a mapping)
from A to B is a set f of ordered pairs in A x B such that for each = € A there exists
a unique y € B with (z,y) € f. (This means that if (z,y) € f and (z,y’) € [, then
y=1'). A function f from A to B is a relation from A to B such that no two elements
of f have the same first component.

The set A of the first elements of a function is called the domain of f and the set of
all the second elements of f is called the range of f. Note that dom f = A but range
of f C B. Range of f is also denoted by f(A).

Example 1.5.1. Let R be the set of all real numbers. Suppose f maps R into R (i.e.,
f: R = R) defined by f(z) = 22, ¢ € R. What are the values of the function at
H”GgIHHNu Im..w

B —
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...H..rmam.ﬁu.gnkﬁllm__m

TE A y 1€,
: Such that f(z) = yi. range of f = co-domain of X e mnw_ﬁ
- O:TOH—m e ) w
mappi . .
one-one mapping (or HHM L,..Mnﬂ. (or Injective mapping). The map f: A
distinct images in B. e, f ve mapping), if and only if distinct A — B is callgq
positive sk » % 10 Ty, 9 € A, .:H U = members of A _E.cm
iy . ement: z; # 1y — f(xy) £ f(z u_ f(x2) = T1 = I3 or the contrg
- Bijective mapping, T} il
a one- e A

Exa
mple 1.6.1. Let f R — R, defined by f(z) =22, Vr e R

e Thi e T
1S apping 1s not injective (see that f(1) =1 and f(-1) = 1; again f(2) =4

E&.\Alwvﬂhmm..
q..,uﬁ_mscﬂﬁa:mﬁ. .. .
distinct images). hat distinct members of the domain have

e Thi ing i ecti
_m., Emﬁﬁ_um 1S not surjective (see that 3 —1 € co-domain R which has no
pre-image z in the domain R because every image is non-positive).

Thus the mapping cannot be a bijective mapping.

Mw,mﬂ_.u_m 1.6.2. Let f: RT U {0} — R, defined by f(z) = z2, z € RT U {0}. Verify
that this mapping is injective but not surjective.

Example 1.6.3. Let f : R — Rt U {0}, defined by f(z) = z*, Yz € R. Check: This
mapping is not injective but it is surjective.

Example 1.6.4. Let f : Rt U {0} — R* U {0} defined by f(z) = g2, Yz € Rt U {0}
Verify that this mapping is both injective and surjective, i.e., it is a bijective mapping.

Remember: (i) In order to prove that the mapping f : A — B is an injective
mapping, we must establish that Vzi,ze € A, if f(z1) = f(xa), then T = Za. To %m
this, start with f(z1) = f(z2) and show that z; = x2. f is injectiye if each element 0

B has at most one pre-image.

o
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cHAPTER st show that for any y € B,

f each element of B has at

.A—Bis8 surjective Em.ﬂ?:ﬁ.. we :E.
.‘_.m.h such that f(z) = V- f is surjective 1
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(i) To Prove
3 at least On¢ *
|east one pre-image:

TEV To ﬂﬂﬂ...__._m H “.
actly one pre-!

are to show that each element y € B

A— Bisa bijection, Weé
mage T € 4

ex
e buﬁHuHm—nvnnHu}s. Define

f(z) = 22/(z-1), T € A.

ective, we start with f (z1) = f (z2), where

function f is inj
e that the =gz = 1) =5 =%

A HHu\nHuulnw_ —— H.._.ﬁH.M - .—.V
HH-HH m | i
¢ i injective. ; - - btain
et e the range of f we solve for z the equation =3 = ¥ new
To determin

which 18 defined for ¥y # 2.

Em H. m - | _.— |
H “ H lu 1 . b

is both injective and surjective, 1€, f s byective.

se mappings (or Inverse functions)

IV. Inver
B is a bijection of A ONTO B, then the set

Definition. If f: A —
muﬁ?immxb"?émbx.ﬂ

s a function on B into A. This function is called the inverse function (or inverse
mapping) of f, and is denoted by f~!. The function f -1 is also called the inverse of f.

Note: In order to define inverse of f : A — B, f must be bijective and domain (f) =
range of f~! and range of f = domain of f~!. Alsoy = f(z),if and only if z = ~Hy).

Example 1.6.7. We have observed in Ezample 1.6.4, that the function
f:RYU{0} = R U{0}

defined by f(z) = 2%,z € Rt U {0} is both injective and surjective (i.e., here f is a
bijection on R* U {0}) and hence f~! ezists.

The functioh inverse to f is given by (solving y = z? give z = /%)

f~(y) = 3 for y € R* U {0} (range of f).
We may write f~1(z) = /z for z € R* U {0} (replacing y by z).

Example 1.6.8. See Ezample 165. f:A={reR:z#1} - B={yeR:y # 2}
defined by f(z) = 2/(z-1), z € A.



AN
INTRODUCTION TO ANALYSIS: DIFFERENTIAY, ¢
ALy
Ly

This b, # '
pags I_.H_h,__n:az f is a bijection of A oNTO B. Hence f~! exists and f1
.m.. — 7/Ww=2), y € B [Solving y = 2/(;_) gives & = v/(y-) 'S Bivey, by
€ may also write f- |
) m_Mﬁ. also write f~!(r) = */(=-2), x € B (replacing y by r)
. Identi ; : e
- dah ity Hwﬁ?um (or Identity function). The function i a4
y = T T € Als called the identaty function on A, denoted by e amm:_&

every element of 4 hixed. 4. Then Ia _.Emf
¥l Equality of two i
mappings. Let f: 4 — .
”23 defined on A. Then f and g are nm,:mw ittt o -~
T € A.

nctj
equal (written as f=g9)if f(z) M_MMJ
= g(y

For .
equality, f and g must have the same domain and for cach r € 4, f (z)

1
—

Example 1.6.9. Le¢ f:R > R defined by f(z) =

&mﬁ;m&&@ ﬁu._,.q_ﬂmﬂn:mhmﬂm_ﬁ.lﬁ?

£, .
.ﬁ_ﬁuﬁu _ Emﬁﬁ: I ..I.......__.. (0

—I, whenr <.

Both f and g have the same domain and moreover, f(r) =g(z) vz e R
. in this case, we write F=g. |

Obviously this is _n.uﬁ possible u an HE ..ﬁ Hm: Hmﬁw_uﬁ Q*::m_. 1) E,_n_. Sa ).
i mE“m by e .::n mw,,m f(x) is an element in the domain .am g. In order
T) we are to assume that the range of f is contained in
the domain of g, i.e., range of J € domain of g.
Definition. Let f: A — B and g : C' — D be two mappings. If the range f(A) of
f is a subset of C then the mapping gof : A — D defined by (gof)(z) =g(f(z)),z € A
1s called a composite mapping.
In particular if f : A — B and g : B — C then the composite mapping go f
is always possible as f(A) C B. The order of the compositions should be maintained
strictly, because go f and fog are different functions, in general, when both are defined.

Example 1.6.10. Let f and g be two functions defined on R, given by f(z) = 3z and
g9(z) = 2z% - 1.

Since dom ¢g = R and range of f C dom ¢ = R, the domain of go f is also equal 0
R and the composite function g o f is defined by

(90 /)(z) = 9{f(2)} = g(3x) = 2(32)" — L MBw” — 1.
On the other hand, (f o g)z = f{g(z)} = f(2z2=1) = 3(22* - 1) = 6z" — 3.

il

gof#/°9

5 We observe
Most important poit

the domain of 9-
e let f(Z)= 1
The composite fun

Only for T € domain

_1<z< Lk

trictions of fun

We M“M“m Mmm A, — B by the H:_mc&,_

triction of [ 1o A,, denoted DY iy

HMnHM: Of course, there are good reasons

A very common example: Let f : R —
injective {".

Thu

_ 72 and g(z
ction go f is given by

ctions. Su

function 18 certainly not
and so it cannot have an In
However, if we restrict f to set A

VErse.
—— .TH.

restriction function

fa, has an mverse function (positive square
1

The trigonometric f

¢t to construct .__...__n..\. 19

) = /\\Hu_ domain of g=

of f that satisfies f

(z) = f(z) Vz € Al

fa, is both injective and surject

ONS AND MAPPINGS

to see that the Tange of f 18 contained in

%A”_.|Huvul.. (\H‘..I|H|».

ose r which satisfies

o f)z = gl (@)} =

(z) = 0, i-e, for th

A into B and let A; C A.
This function f) is called

We thus cut doun in size the domain of a
for restricting the domain in this manner.

R defined by f(z) = z2, for z € R. This

ppose .\. maps

f{~1) = 1, J(1) = 1} and hence not bijection

.xre R,z >0} or A = R* U {0}, then the

ive so that the restriction function

root function).

unctions sin z and cos z are not injective for all z € R. However,

by making suitable restrictions of these functions, one can obtain the inverse sine and

inverse cosine functions. Sine-function can

function can be restricted to 0 < = < . In these restrictive domains sin™ " r and cos

are defined.

be restricted to Im < r < I and cosine

=+ =2
-1 -1,

Note: The function f : A — B is an extension of its restriction
fi:Al —- Bthen A C A

EXERCISES ON CHAPTER 1: I(B)
(On Mappings)

(Hints are given at the end of this

1. Define mapping of a set X into a set V.
to your definition? If SO, mention the

Exercise for *-marked problems)

Do the following correspondences conform
Range or Image set.

ad : T —
(a) f:Z E, defined by f(z) = 2z, vz € 7+ (Z* is the set of all positive

integers and E is the set of even
(b) g: R — R, defined by g(z) = e*
Hnu ._w i X = Y m __
the students in years)

d) f:R — R, defined by f(x)

= log
i

positive integers.)
Vr € R.

X = set of all students of vour college and ¥V = g ages of

z, r € R.

L recesaniotiniing..

£
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